36 research outputs found

    Quantum hydrodynamics for supersolid crystals and quasicrystals

    Full text link
    Supersolids are theoretically predicted quantum states that break the continuous rotational and translational symmetries of liquids while preserving superfluid transport properties. Over the last decade, much progress has been made in understanding and characterizing supersolid phases through numerical simulations for specific interaction potentials. The formulation of an analytically tractable framework for generic interactions still poses theoretical challenges. By going beyond the usually considered quadratic truncations, we derive a systematic higher-order generalization of the Gross-Pitaevskii mean field model in conceptual similarity with the Swift-Hohenberg theory of pattern formation. We demonstrate the tractability of this broadly applicable approach by determining the ground state phase diagram and the dispersion relations for the supersolid lattice vibrations in terms of the potential parameters. Our analytical predictions agree well with numerical results from direct hydrodynamic simulations and earlier quantum Monte-Carlo studies. The underlying framework is universal and can be extended to anisotropic pair potentials with complex Fourier-space structure.Comment: 18 pages, 10 figures; supplementary information available on reques

    Linearly forced fluid flow on a rotating sphere

    Full text link
    We investigate generalized Navier-Stokes (GNS) equations that couple nonlinear advection with a generic linear instability. This analytically tractable minimal model for fluid flows driven by internal active stresses has recently been shown to permit exact solutions on a stationary two-dimensional sphere. Here, we extend the analysis to linearly driven flows on rotating spheres. We derive exact solutions of the GNS equations corresponding to time-independent zonal jets and superposed westward-propagating Rossby waves, qualitatively similar to those seen in planetary atmospheres. Direct numerical simulations with large rotation rates obtain statistically stationary states close to these exact solutions. The measured phase speeds of waves in the GNS simulations agree with analytical predictions for Rossby waves.Comment: 13 pages, 6 figure

    Vortex line entanglement in active Beltrami flows

    Full text link
    Over the last decade, substantial progress has been made in understanding the topology of quasi-2D non-equilibrium fluid flows driven by ATP-powered microtubules and microorganisms. By contrast, the topology of 3D active fluid flows still poses interesting open questions. Here, we study the topology of a spherically confined active flow using 3D direct numerical simulations of generalized Navier-Stokes (GNS) equations at the scale of typical microfluidic experiments. Consistent with earlier results for unbounded periodic domains, our simulations confirm the formation of Beltrami-like bulk flows with spontaneously broken chiral symmetry in this model. Furthermore, by leveraging fast methods to compute linking numbers, we explicitly connect this chiral symmetry breaking to the entanglement statistics of vortex lines. We observe that the mean of linking number distribution converges to the global helicity, consistent with the asymptotic result by Arnold. Additionally, we characterize the rate of convergence of this measure with respect to the number and length of observed vortex lines, and examine higher moments of the distribution. We find that the full distribution is well described by a k-Gamma distribution, in agreement with an entropic argument.Comment: 18 pages, 8 figure

    Turbulent Chemical Diffusion in Convectively Bounded Carbon Flames

    Get PDF
    It has been proposed that mixing induced by convective overshoot can disrupt the inward propagation of carbon deflagrations in super-asymptotic giant branch stars. To test this theory, we study an idealized model of convectively bounded carbon flames with 3D hydrodynamic simulations of the Boussinesq equations using the pseudospectral code Dedalus. Because the flame propagation timescale is much longer than the convection timescale, we approximate the flame as fixed in space, and only consider its effects on the buoyancy of the fluid. By evolving a passive scalar field, we derive a {\it turbulent} chemical diffusivity produced by the convection as a function of height, Dt(z)D_{\rm t}(z). Convection can stall a flame if the chemical mixing timescale, set by the turbulent chemical diffusivity, DtD_{\rm t}, is shorter than the flame propagation timescale, set by the thermal diffusivity, κ\kappa, i.e., when Dt>κD_{\rm t}>\kappa. However, we find Dt<κD_{\rm t}<\kappa for most of the flame because convective plumes are not dense enough to penetrate into the flame. Extrapolating to realistic stellar conditions, this implies that convective mixing cannot stall a carbon flame and that "hybrid carbon-oxygen-neon" white dwarfs are not a typical product of stellar evolution.Comment: Accepted to Ap
    corecore